

Debuccalization without spirantization *or* Why 10th century Kannada lost its lips

Chandan Narayan York University

Buffalo Linguistics April 25, 2025

Background

Here is the setting of our story:

Modern Kannada (South Dravidian) has *h***-** where closely related Dravidian languages (e.g., Tamil, Malayalam) have *p***-**

Ta.	parl	pınnarl	pire	pur	por
Ma.	parl	pınnıl	pira	purvu	porgu
Ka.	harlu	hınde	hire	hu:vu	horgu
	'milk'	'behind'	'gourd'	'flower'	'go'

Background

Extensive stone and copper plate inscriptions from Kannada-speaking regions, suggest debuccalization started between the 10th and 11th centuries CE

By the 14th century nearly all *p*-initial Kannada words and Sanskrit borrowings show the *h*- pronunciation

L
↓
హ

https://shorturl.at/emRFO

https://shorturl.at/6kf2l

Brief typology of debuccalization

The typical path for obstruents losing their oral place features and changing manner (especially in prosodically strong positions) involves an intervening **spirantization** stage with an oral constriction (O'Brien, 2012)

- *h* developing from earlier fricative, e.g., Middle Chinese $\chi > h$ (Pulleyblank, 1984)
- aspiration with intermediate fricative stage, e.g., PIE *b^holh₃-yom > Latin folium > Occitan huelha

Debuccalization in Kannada does not follow either of these paths, developing from an **unaspirated** bilabial plosive

Comparable scenarios

1. Armenian

PIE *p > Ar. h (Beekes, 2003) [Most like the Kannada case]

2. Rotuman and Sa'a

Proto-Oceanic **p* > *h*; but Tongan, Samoan suggest intervening **f* stage

3. Japanese

Old Japanese p > Early Mod. Japanese [ϕ] > Mod. Japanese h

Direct move from *p* > *h*

Kannada inscriptions move directly from ${\it p}$ to ${\it h}$ without an intervening spirant (frication) stage

Crucially, the glyph representing the aspirated bilabial stop p^h was available to Kannada scribes—Extensive use of Sanskrit (with a full set of aspirated stops) in the epigraphical record

If Kannada p were produced (at some point prior to the change) with spirantization, we might have expected scribes to use glyphs representing p^h (but they didn't)

Extant theories of Kannada debuccalization

Despite the absence of epigraphical evidence of a spirantization stage, early 20th C. Dravidian philologists nonetheless proposed that **p** would have been aspirated at some stage

- 1. Contact with Indo-Aryan hypothesis
- 2. Push-chain hypothesis

Contact hypothesis

Subbaiya (1909) suggests that debuccalization was catalyzed by Kannada's contact with Marathi (Indo-Aryan)

Middle Indo-Aryan had debuccalized **bh-** to **h-**,

E.g., Sanskrit *bhavati* (copula) > MIA *hoti*

"*p* seems to have first become aspirated as *ph* and then changed to *h*"

If this were correct, we would expect a geographically constrained distribution of early Kannada *h***-** forms...but we don't

Push chain hypothesis

Tuttle (1929) appealed to another sound change that occurred in pre-Old Kannada at or before the debuccalization

Drav., IA **v-** > Ka. **b-**, e.g. Skt. *vana*, Ka. *bana* 'forest'; Tamil *va-*, Ka. *ba-* 'come'

"In order to make the difference clearer, many persons strengthened *p* to *ph*, which later developt [*sic*] thru *f* to *h*" (Tuttle, 1929, p.154)

Stopping of **v** to **b** exerted phonological pressure on *p* (acoustically similar to *b*) h = h

Road map

1. Testing the push-chain hypothesis

Can we mimic the phonological conditions of 10th C. Kannada in an artificial word-learning experiment?

Do the results definitively support a push-chain source for Kannada debuccalization? (Hint: they don't)

2. New proposal: basic acoustics and perception of unaspirated *p*

Testing the push-chain hypothesis

How do we recreate the linguistic milieu of 10th century south India?

Can we find a language, which has a phonological inventory comparable to Old Kannada, i.e., lacking **b** as well as lacking aspiration?

Would introducing **b** cause listener/speakers to change their production of **p**?

Modern Tamil as proxy for Old Kannada

Tamil is a conservative South Dravidian language retaining many features of Proto-Dravidian \rightarrow lacks phonemic voicing

Comparable place of articulation inventory to Old Kannada

Unlike Tamil, Old Kannada orthography contrasted the full complement voiced/voiceless and aspirated/unaspirated plosives and glottal fricative to accommodate Indo-Aryan borrowings

Modern Tamil borrows *heavily* from Sanskrit and English \rightarrow the orthography, however, does not represent voicing or aspiration

Voiced onset borrowings produced with negative VOT (Lisker & Abramson, 1964), aspiration disappears altogether

Experiment 1: Minimal-pair word production

Will Tamil-speaking children adjust their VOTs for common words beginning with unaspirated **p** when taught a new word beginning with **b**?

Why children? \rightarrow less affected by English borrowings than adults

15 monolingual Tamil-speaking/reading children (9-12yo)

Recorded individually in schoolhouses in three villages near Madurai, TN

Part A: Baseline productions of *p*- and *k***-** initial words

Part B: Association of new *b*- initial words with an unfamiliar image

Part C: Minimal-pair production task

Part A: Baseline productions

Participants asked to "Name the picture" for 10 *picturable p*- and *k*- initial words: boat, hand, tiger, rock, boy, fruit, cat, etc.

Results:

Mean VOT_p = 0.017s (*sD*=0.013) Mean VOT_k = 0.029s (*sD*=0.01) Nothing remarkable about

productions of unaspirated stops. VOTs consistent with known POA effects (e.g., Lisker and Abramson, 1964)

Part B: **b**- initial words

Participants then asked to listen to *b*- new/nonce words associated with unfamiliar objects. Words constructed from English *b*- initial words (e.g., "bully"), with two cycles of prevoicing and four vocalic cycles of *b*- appended to real Tamil *p*- initial words

Part B: **b-** initial words

Participants were then asked to repeat newly learned words

Results:

Mostly lead (negative VOT) in newly "learned" words with Mean $VOT_b = -0.04s$ (*sD*=0.014)

17

Part C: Minimal pair production

Listeners were told that they were to *teach* the new *b***-** initial word to a naive Tamil speaker using the sentence frame: "Don't say [*new b***-/***p***-** *initial word*], Say [*real b***-/***p***-** *initial**word***]"**

Only pictures of the target words were presented

I wanted to induce a differentiation between *b-/p-* initial words \rightarrow background noise was presented in headphones

Participants read sentence frame in three different increasing (pink) noise conditions \rightarrow Lombard effect: no noise, 70dB, 75dB

Part C: Results

Distribution of raw VOT values in the minimal pair task

To account for individual variation in VOT, I calculated a measure representing deviation of an individual's VOT in the minimal pair task from their baseline VOT (for each word) \rightarrow "VOT difference"

VOT difference ~ Voicing * Noise

- No effect of Noise; Speakers did not adjust productions to produce Lombard effects
- VOT difference ~ Voicing
 - VOT difference $_{p}$ < VOT difference $_{b}$ (β =-0.04, SE=0.008, t=-4.81)
- Magnitude of change from baseline productions of *b* significantly greater than *p*

Discussion

Tested Tuttle's (1929) hypothesis that speakers of Old Kannada strengthened word initial *p***-** due to the introduction of *b***-**

Tuttle's reasoning suggested that by strengthening *p***-** via aspiration speakers maximize the acoustic-perceptual salience of the contrast with *b***-**

Tamil speakers did not aspirate *p*-initial words when producing minimal pairs (with new *b*- initial words), rather they produced longer prevoicing in *b*-(relative to baseline productions)

While certainly not definitive, this result challenges Tuttle's push-chain hypothesis

Discussion

What do we make of the increased prevoicing?

Dispersion (Liljencrants and Lindblom, 1972) suggests that contrastive sounds are situated in acoustic space in a way that maximized perceptual distinctiveness

For short-lag stops (like *p*- here) there is a limit to how long aspiration can be

E.g., At slow speaking rates, Tamil *p*- has VOTs ~ 30ms, while English *p*^{*h*}- varies between 80-150ms (Narayan, 2023)

Positively extending VOT for *p*- would disrupt the Tamil laryngeal category while accommodating a newly learned one

Extending prevoicing in *b*- would be consistent with Dispersion theory

What next?

Absent a clear phonologically motivated explanation for the sound change, how else can we explain debuccalization of p without an intervening spirantization stage?

In the next section I will outline a new proposal that appeals to a very long history of phonetic explanations for phonological patterns (Ohala, Lindblom, Beddor, Blevins)

I will conclude that the *seeds* of the sound change are found in the nature of **p** itself and we need not appeal to external forces (paradigmatic or contact-induced) to explain how Kannada lost its lips

$Proposal \rightarrow Burst amplitude misperception$

Bilabials have naturally **quiet release bursts** (relative to lingually articulated stops)

What's a burst? \rightarrow the "pop" of air that escapes your mouth when an oral constriction is released

The amplitude of the burst is related to the place of articulation \rightarrow *p***'s** are quieter than *t***'s** and *k***'s**

Coupled with the fact that F2 transitions are short in bilabials (Kewley-Port, 1982), [p] is **predicted to be misperceived** more than other places of articulation \rightarrow the direction of misperception is toward *placeless* [h]

Burst spectrum (black) Vowel spectrum (**red**)

In CVs, the difference between burst and vowel spectra amplitudes (in high or mid freq bands) gives a normalized burst amplitude

Narayan (2023)

Short-lag bilabials are special

Short-lag bilabials have quiet release bursts due to *both* the:

- 1. The oral pressure dynamics of short-lag VOT
- 2. The oral pressure dynamics of bilabial plosives

Aerodynamic constraints \rightarrow Low intensity burst \rightarrow misperception

1. P_o properties of short-lag plosives

For voicing (vowel) to begin, *P*_{subglottal} > *P*_{oral}

Voicing initiation occurs very soon after the release of the oral constriction Short-lag (Tamil), 200ms vowel → 15-20ms VOT Long-lag (NA English), 200ms vowel → 45-75ms VOT (Narayan, 2023)

Fast voicing initiation $\rightarrow P_{o}$ should be sufficiently low such that on release of the oral constriction, P_{o} is rapidly equalized with $P_{ambient}$

Short-lag English (voiced) plosives (VOTs comparable to voiceless short-lag) have lower P_o than long-lag counterparts (Arkebauer, et al., 1967; Malécot, 1970)

2. P_{o} in bilabial plosives

Lower amplitude of release burst across the spectrum in bilabials relative to lingual constrictions

Bilabials → larger oro-pharyngeal volume relative to lingually articulated stops (*Boyle's Law*)

Given comparable mass of air: P_{o} in bilabial constriction $< P_{o}$ posterior constrictions (<u>t</u>, t, k)

$P_{o} \rightarrow$ burst amplitude

Envelope of transient energy reflects pressurized intraoral air (P_o) posterior the occlusion

Relative to lingually articulated stops, bilabials have greater difference between burst amplitude energy and amplitude of F1 (Narayan, 2023; Stevens et al., 1999)

Bilabial bursts are less intense than bursts in lingually articulated stops

Consequences of weak bursts: Experiments

Two perception experiments tested the weak-burst-amplitude hypothesis as promoting debuccalization in Old Kannada

- 1. **Discrimination task** examines the discriminability of CV syllables in three listening conditions \rightarrow is *pV* confusable with *hV* more than other places of articulation?
- Identification/Confusion in two listening conditions → Do listeners identify pV as hV disproportionately relative to other places of articulation

 a. Would amplifying p-bursts result in more accurate identification?

(Again) Tamil as a proxy for Old Kannada

Like Old Kannada, word-initial plosives in modern Tamil do not exhibit a phonological voicing contrast

h exists as a marginal phoneme in order to accommodate non-Dravidian borrowings (this happened *very* early)

Unlike Old Kannada, Tamil never introduced an aspirate series to accommodate Sanskrit borrowings

Experiment 1: Discrimination

Adult Tamil-speaking listeners (*n*=64)

AX (same-different) task

Stimuli: C_1V-C_2V (C=p,<u>t</u>, t, k, h; V=a, i, u), 120 fully crossed AX trials

Listening conditions: 15dB, 10dB, 5dB SNR

Multi-talker babble created from Tamil banter (8-10 males); Time-reversed to remove word/phrase-level information

Experiment 1: AX Results

Accuracy ~ Contrast * Noise + (1 |vowel) + (1 | sub)

For bilabial contrasts:

- > Main effects of Contrast and Noise
- $> p-h < p-\underline{t}, p-t, p-k$

Lingual contrasts:

- Main effects of Noise, variable effects of Contrast
- Pattern of Contrast similar to other lingual places of articulation

Experiment 1: Discussion

p-h contrast is disproportionately affected by multi-talker babble noise relative to *p* in contrast with other places of articulation

Lingual places of articulation, when in contrast with h, showed accuracy comparable to contrasts with other stops $\rightarrow p$ -h contrast is different from other contrasts for Tamil speakers

Experiment 1 does not tell us about the inception of the debuccalization change, but rather provides psychoacoustic evidence for the weak perceptual salience of the *p*-*h* contrast

h was available to Old Kannada speakers (borrowings from Sanskrit and Prakrits) → **How readily would listeners identify [pV] as [hV]?**

Experiment 2a: Identification

Tamil-speaking listeners (*n*=27)

5 alternative forced choice task

Within-subjects design

Two listening conditions: No noise, 10dB SNR multi-talker babble

Stimuli: *CV* (C=p,<u>t</u>, t, k, h; V=a, i, u), 45 trials per listening condition

Multi-talker babble identical to Experiment 1

Consonant confusions

 $p \rightarrow$ "h" **14%**

p → "h" **50%**

Discussion

There is a clear effect of multi-talker babble (10dB SNR) on the perception of obstruents

Accuracy for all obstruents decreases with noise

Disproportionately (and dramatically) affects *p* which is identified as *h* 50% of the time

How do we know it's the burst?

Vowel context

Data were subset by vowel context

Prediction \rightarrow Burst would be implicated if *p* is misidentified as *h* in the back vowel context (-*a*, -*u*) than in front vowel context (-*i*)

Back vowel/Low F2

Front vowel/High F2

0	dP	S	t t	t	Się	gna p	l k	0	h	
	t	4	13	2		1	1		1	
sponse	ţ	3	32	75		4	2		2	
	р		1	1	2	20	0		11	1
Å	k		2	1		6	75	5	8	
	h		3	2	5	50	3		59)

	t	t	Signa p	l k	h
t	40	4	10	5	12
t se	28	64	11	5	6
p	1	0	21	0	14
ж К	1	3	12	61	10
h	11	10	27	10	39

-i

Signal

р

Response

k

h

k

h

	-u								
	Signal								
	t	t <u>t</u> pkh							
t	73	0	1	1	3				
t se	4	76	3	2	3				
р uodsə	3	3	49	8	8				
۳ к	0	1	9	63	6				
h	1	1	19	7	61				

Signal k h p Response k h

More misperceptions of *p* as "h" in back vowel contexts in noise condition

Suggests that in challenging listening conditions, when the burst is masked, *p* is better identified when F2 characteristics of the following vowel and (bilabial) transition are dissimilar

Experiment 2b: Replication, burst amplified

Tamil-speaking listeners (*n*=25)

Stimuli identical to Exp. 2a, except *p*-burst amplified by **12dB** (across the spectrum)

Two listening conditions: Clean and 10dB SNR

All other methods identical to Exp. 2a

 $p \rightarrow$ "h" **9%** (down from 14%)

 $p \rightarrow$ "h" **13%** (down from 50%)

Discussion/Conclusions

It *is* possible to explain the change from (unaspirated) *p* to *h* without appealing to an intervening spirantization stage in the historical phonology

Burst amplitude contributes to place perception

- > Short-lag p has a low-intensity burst for aerodynamic reasons
- Low-intensity burst weakens the perceptual salience of place information in challenging listening conditions
- Listeners disproportionately misperceive p as h relative to other places of articulation

Language-internal aerodynamic constraints and their perceptual consequences may provide the *seeds* of the debuccalization sound change in Kannada

Acknowledgements:

Ramprashanth Venkatakrishnan (Field researcher) for carrying out experiments in India; Pam Beddor, Peter Avery, Thomas Kettig, XiaoXiao Cui, Griffin Cahill, Andrew Lubanszky, Jacob Graham for comments; John Ohala for inspiration Arkebauer, Herbert J, Thomas J Hixon, and James C Hardy. 1967. "Peak intraoral air pressures during speech." Journal of Speech and Hearing Research 10:196–208.

Beekes, Robert S.P. 2003. "Historical phonology of Classical Armenian." Armeniaca: Comparative notes pp. 133–211.

Greenhill, Simon J and Ross Clark. 2011. "POLLEX-Online: The Polynesian lexicon project online." Oceanic Linguistics 50:551–559.

Kewley-Port, Diane. 1982. "Measurement of formant transitions in naturally produced stop consonant–vowel syllables." *The Journal of the Acoustical Society of America*, 72:379–389.

Narayan, Chandan R. 2023. "Speaking rate, oro-laryngeal timing, and place of articulation effects on burst amplitude: Evidence From English and Tamil." *Language and Speech*, 66:851–869.

Pulleyblank, Edwin G. 1984. Middle Chinese: A study in historical phonology. UBC Press.

O'Brien, Jeremy. 2012. An experimental approach to debuccalization and supplementary gestures. Ph.D. thesis, University of California, Santa Cruz.

Malécot, André. 1970. "The lenis-fortis opposition: its physiological parameters." The Journal of the Acoustical Society of America, 47:1588–1592.

Stevens, Kenneth N., Sharon Y. Manuel, and Melanie Matthies. 1999. "Revisiting place of articulation measures for stop consonants: Implications for models of consonant production." In *Proceedings of the International Congress of Phonetic Sciences*, pp. 1117–1120.

Subbaiya, K.V. 1909. "A primer of Dravidian phonology." *The Indian Antiquary* 38:188-200.

Tuttle, Edwin H. 1929. "Dravidian researches." The American Journal of Philology 50:138-155